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Ultrametricity in three-dimensional Edwards-Anderson spin glasses
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We perform an accurate test of ultrametricity in the aging dynamics of the three-dimensional Edwards-
Anderson spin glass. Our method consists in considering the evolution in parallel of two identical systems
constrained to have fixed overlap. This turns out to be a particularly efficient way to study the geometrical
relations between configurations at distant large times. Our findings strongly hint towards dynamical ultra-
metricity in spin glasses, while this is absent in simpler aging systems with domain growth dynamics. A
recently developed theory of linear response in glassy systems allows us to infer that dynamical ultrametricity
implies the same property at the level of equilibrium states.

PACS numbd(s): 05.50:+q, 75.10.Nr, 75.40.Mg

The dispute about the nature of the spin glass phase sémarkable consequence of stochastic stability is that dy-
finite-dimensional spin glasses has lasted by now almostamical ultrametricity implies the static ofig4].
twenty years. The droplet modgl] has challenged the pre- In this paper we investigate the possibility for dynamical
dictions of mean field theorgMFT) [2]. UM in the three-dimensional Edwards-AndersditA)

In the last years a large collection of numerical data havénodel. For comparison we also perform the same test on
tested, with positive answer, the applicability of spin glassmodels with domain coarsening off-equilibrium dynamics,
mean field picture to finite-dimensionati€ 3,4) systems Where UM should not be expected. _

[3-5]. However, some of these numerical evidences have TNh€ high evidence we can achieve is based on a new

been recently reinterpreted as finite volume effects by th&ynamical method where we evolve in parallel two identical
authors of Ref.[6] and so many questions on the low- systems(replicas for shoptwith fixed value of the mutual

temperature phase of finite-dimensional spin glasses still reqverlap. This is analogous to a conserved-order-parameter

. dynamics in a ferromagnetic system and it is similar to the
main unanswered. ne already used in R€i8] to study the equilibrium behav-
One of the most characteristic aspects of mean fiel

. . . or.
theory is the predlctlorj pf yltrametnut&JM) [7]. At low The EA model is defined by the HamiltoniaH(S)
temperature the ergodicity is broken and many low free en—

R - =2i,)JijSS; where the spins are Ising variables, the sum
ergy states are present. Ultrametricity implies that the disgnang'the nearest neighbors pairs on a cubic lattice, and the

tance_s between these states verify an ineq_uality stronger th%uplingsJij are normally distributed quenched independent
the triangular onesee below. However, this property has andom variables. We define the overlap among two spin
been rather elusive to a direct probe. The best evidences Ebnfigurationssl and S2 asq12=L’3EiSlSz which is di-

favor of this property have been givéto our knowledggin  rectly related to the Hamming distanad, through gy,
Refs.[8,9]. In the former it was studied the equilibriumofa —q g .

four-dimensiona(4D) spin glass model using small samples.  The mean field equilibrium solution of this model has the
In the latter very-low-energy configurations of a 3D modelyitrametric property at low temperature; for each three con-
were used, again for relatively small samples. In both casefgurationS', S°, andS® chosen with Boltzmann probability,
an extrapolation to large volumes was needed in order téhe following inequalities hold:

check ultrametricity. In this paper we present results for the

3D spin glass model with a method that allows us to reach g1o=Min{qq3,023}, dip=maxd;s,d,s}, 1)
much larger sizes.

Another fundamental aspect of MFT is the prediction ofwhich are much stronger than the usual triangular dpe
slow dynamics and aginffl0—12. This is a nonstationary <d;3+d,3. Moreover in Ref[15] it has been shown that, if
asymptotic regime, following a quench from a high temperasome kind of ultrametricity holds in the low-temperature
ture, which persists forever in infinite systems. In this out-phase of the EA model, it must be of the same kind of that
of-equilibrium regime, the equilibrium property of ultra- present in the mean-field solution.
metricity has a dynamical counterpart in ultrametric relations In the off-equilibrium dynamical solution a relation analo-
among time dependent autocorrelation functions. Recent regous to Eq(1) holds for the two-time autocorrelation func-
sults of linear response theory succeeded to relate in a uniquiens C(t,t')=L"33;S(t)S(t'). Taken three large times
way properties of statics and dynamics, relying on the ret;<t,<t;, one finds that
cently introduced hypothesis of stochastic stablitg]. This
property states the continuity of the average correlation func- C(tq,t3)=min{C(t,t5),C(ty,t3)}. 2
tions under weak random perturbation of the Hamiltonian.

The validity of the property in three- and four-dimensional The precise statement is that the relation among the correla-
spin glasses has been numerically verified in Réf. A tions should tendto the one of Eq(2) in the infinite time

1063-651X/2000/6@)/1121(4)/$15.00 PRE 61 1121 ©2000 The American Physical Society



1122 SILVIO FRANZ AND FEDERICO RICCI-TERSENGHI PRE 61

limit [11,12. In the simulations the relation among the three ) A
correlations is plagued by strong finite time effect, so that a
direct verification would be difficult with the present com- L
puter resources. We therefore decided to probe a relatiorq0
which for long times is consequence of, and equivalent to, ¢

Eqg. (2). We consider the dynamics of two replicas of the Q//

system with the same disord& and S?, which evolve in ¢

parallel with different thermal noises and constrained at eact 04(10

time to have a fixed mutual overlap,. The dynamics fol- 1 C
lows a quench at time zero and we measured the auto L =
correlation and cross-correlation functions

1 1 FIG. 1. Schematic draw of the region of allowed values Gor
N 1 1iery 2 2,00 andD (shaded areaThe ultrametric relation force them on the bold

Ctt)= 5 2 SUS(t)= 5 2 SO, ashed oo,

1 1 weight of a configuration would be ekpB[H(S;)
D(t,t')=— 2> S(OS(t)== D SOSA). 3 +H(S)]-AL3(G1o—Go)2/2}. The value of the parameter

L= L= must be appropriately tuned: a too small value would not
force enough the systems and their overlap will be system-
atically different from the one we fixedgg). On the other
hand a too large value would render movements too unprob-
able and the dynamics would evolve very slowly. In the
whole set of runs we fixed =5 for the EA model and\
=2 for the other models. The choice has been made with the
Mim of maximizing the Monte Carlo acceptance rate, avoid-
ing the systematic errors just described. We have checked
4) (see_ Fig. 2 that, for these values of,q;,(t) tends to the

desired valuey.

Note thatC(t,t)=1 for Ising variables, while the constraint
implies D(t,t) =qo.

We would like to argue, with a hand waving argument,
that the relation in Eq(2) entails the following ultrametric
constraint on the cross-correlation function if the valuggf
is between 0 and the value of the Edwards-Anderson para
etergea:

D(t,t")=min{C(t,t"),qo}-

During the relaxation the free energy of the system decreases As we s(,;udy the bghawor OLthﬁ mocf_el n the a:jglng re-
monotonically towards its equilibrium value. This will be 9/M€: We do not need to reach thermalization and we can

higher or equal to the one of the unconstrained system at thg‘mulate large sizesL(=24). For_such vplume, finite size
same temperature. The basic observation is thaf, i§ one effects do not affect the dynamical regime we study. The

of the values allowed for the overlap among equilibriumc'itical temperature of a single uncoupled model Tig
states, i.e.goe[0,0ea], the equilibrium free-energy of the =0.95(4)[5] and we S|muI<_51te the system in the spin glass
constrained system should coincide with the one of the unPhase al =0.7. The large size, the low temperature, and the
constrained onBL6]. Equation(2) expresses the fact that for Starting configuration, which is randomly chosen, ensure that
large times, the directions in which the system can go withN€ System stays in the aging regime all along the simulation
out increasing the free-energy must be compatible with ul-
trametricity. The constrained system can lower its free-
energy down to the equilibrium value only if all the possible 0.6
correlations one can forrfauto and crogsverify for long

times UM inequalities. As two of the four correlations that 0.58 1
can be formed with the configuratio®(t), S*(t’), S(t),

and S*(t") are fixed togo, Eq. (4) should follow. A formal  _ 456 1
argument leading to the same conclusions can be formulates = O fyifrrspseeseesss
[17], extending to constrained systems the correspondenc 0.54 5’-0.01 %*%w o |
among statics and dynamics mentioned above. ’ 002 | U FF Rty

In order to see how restrictive relation in Ed) is, let us
discuss what one can expect on a general ground for the 52 | '0'0310 1'02 1'03 1'04 1'05 100 ]
relation amongD and C in a relaxational system. In Fig. 1 P
we display the set of allowed values fG(t,t’) andD(t,t") 05 : ' : :
(shaded areasimply assuming the triangular relation and a 10 I T N VA U 4
monotonic decrease of both functions when the time argu- t

ment’s difference increases. The set of values allowed by the FIG. 2. The time evolution of the overlap between the pairs of
UM relation is represented with the bold dgshed line. EA systems at temperatufe=0.7 with go=0.6. In the inset we

In order to check whether Ed4) holds in the 3D EA g4y the energy difference between a constrained and a free system
model, we have simulated, by Monte Carlo meth®dle- 4t the same temperature. The upper data correspofie-@7 and
tropolis updatg two coupled systems with a soft constraint g —.6<qg, and are clearly compatible with zero. The lower data
2SS ~L3q,, imposed modifying the Boltzmann weight correspond tor = 0.9 andgo=0.9>ges and show how the energy
with a Gaussian of width proportional to %2, such that the  of the constrained system is lower.
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04 . . : FIG. 4. The same plot as Fig. 3 foh) the pure ferromagnet in
04 0.5 0.6 0.7 0.8 0.9 1 2d at T=1.5 and(B) the 3 diluted ferromagnet at =1.67. The
Cr,) waiting time effect is opposite to the one observed in the spin glass.

FIG. 3. Plot of the cross-correlation function versus the autocorversion in 3D. The off-equilibrium dynamics of both models
relation one in the 8 EA model at temperatur&=0.7 for two  shows a domain coarsening regime where the correlation
waiting timest,,=10°,10’. The curves approach the UM bound as function depends on both times &¢t,t")~C(t'/t), a scal-
tw grows. The solid lines are the boundaries of the shaded area (p,f]g form incompatible with ultrametricity.

Fig. 1 In the inset we display the time dependence of the two “\ye have simulated a 2D pure ferromagnetic Ising model
functions. of linear size L=2000 at a temperaturd=1.5 (T2°

_ ) =2.27). We choose a very large size and small waiting times
which can be as long as 101CS. These high performances (t, —32 64,128) in order to avoid that the system gets out
have been achieved using the parallel computer APE10Rom the aging regime we are interested in. These times are
[18]. . . _sufficiently large to be close to the scaling regime. The data

All the correlation functions we measure are extensiveyre averaged oNg= 100 different noise realizations.
and self-averaging quantities, so we do not need a large nuM- The data from the pure ferromagnetic system are plotted
ber of disorder realizations. Their fluctuations are small, Fig. 4(a) in the usuaD(t,t,,) versusC(t,t,,) plot. We also
thanks t_o the large volume used and we average the resul,tgport the bounds of the allowed regitthe shaded region of
on a quite small number of sampleNd=10). The error on  Fjg. 1), Note that the data are far away from the UM bound
the data is always calculated as the sample-to-sample flugyq they seem to converge to sotgeindependent curve.
tuation. - _ Maybe one can think that the comparison of a spin glass

The first quantities we have studied are the overlap of thyith the pure ferromagnet is not enough. So we have simu-
two replicas and the internal energy as a function of time. Agated also a 3D site-diluted ferromagnetic Ising model, which
announced, we see in Fig. 2 that the overlap converges i¢gas a coarsening dynamics similar to that of the pure model,
wards the valuey, we have fixed. The “soft” way of im- pyt much slowef19] and complicated by interface pinning.
posing the constraint is evident in the behavior of the overyye have simulated two samplésach one consisting of a
lap, which is not equal taj, during all the run, but clearly pair of interacting systemsf linear sizeL =200 and spin
converges to it. In the forecoming analysis we will use 0”|Yconcentratiom=0.65. The temperature is well deep in the

the data obtained in the time range where the overlap igq,en phaseT=1.67, the critical temperature bein—@d
statistically compatible witty, that ist,,=10°. The data in ?CZO'GS)ZZ'%O[ZO]' ’

the inset of Fig. 2 show the difference between the energy o
the constrained system and that of a free system evolving a 06 F
the same temperature after a quench at time zero. As wi

expected, the energy difference tends to zero, as it should i@
the valueqy is allowed at equilibrium, while fogy>qg, the g 0.56 -

0.58

energy difference goes to a finite value. i
In Fig. 3 we show our main result: plotting the cross 054/ -+ ]
correlation as a function of the auto correlation we obtain, 0.6 -

for relatively long times, that the data points are quite close
to the UM bound. A perfectly ultrametric system would stay 3 058 |
on the lineD=qy=0.6 as long a=q, and then would E: 0.56 -

follow the line D=C (both lines are plotted in Fig.)3The fo’ 3d Diluted Ferromagnet
data for the 3D EA model are clearly converging to the UM 0541/ If . . . . . . 1
bound: we remind_ the reade.r that the data cannot leave th 055 0.6 065 07 075 08 085 09 0095
shaded area of Fig. 1, that is they cannot cross any of the cwt,)

boundary lines reported in Fig. 3, and so we expect that they
naturally converge to the UM bound. FIG. 5. Zooms of Figs. 3 and() in the region ofD close to the

To understand better how probing are our data, we hav@pper boundanD=q,. The comparison of the two plots makes
also simulated two models where UM is not expected taclear that the effect of the waiting time is opposite in the two cases,
hold: the 2D ferromagnetic Ising model, and its site dilutedand the long time extrapolation is certainly very different.
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In Fig. 4b) we see that the behavior of the data from thetest ultrametricity in short range spin glasses. We find evi-
diluted ferromagnetic model may resemble that of the EAdence that for long times the ultrametric equality between
model, because it seems to be somehow close to the Ufwvo time correlations become fulfilled. As we already
bound. stressed the property of stochastic stability implies then static

Looking carefully at the figure we note, however, that theultrametricity. The beh_avior of spin glasses. is strikingly dif-
t,, dependence of the data in Fig. 3 and in Figb)4are ferent from the behavior of ordered and disordered models
opposite. In fact increasing the waiting time, the value of theW'th dom_al_n coarsening, where we find incompatibility with
autocorrelation function at the point where the data leave thgltrametrlcny.
horizontal line decreases in the Spin gIaSS case, while it in- We would like to thank Giorgio Parisi for continuous in-
creases in the diluted ferromagnetic case. To make this effegéractions and advises, the “INFN sezione di Roma I for
clearer we zoomed the region of Figs. 3 arih)4near the the use of the APE100 computer and the “Universitia
horizontal line(see Fig. 5. Roma La Sapienza” for kind hospitality. We thank also M.

Summarizing, we have used a new numerical method té\. Virasoro and R. Zecchina for useful discussions.
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